
DOI 10.1007/s10898-005-3693-z
Journal of Global Optimization (2006) 35: 521–549 © Springer 2006

Derivative-Free Filter Simulated Annealing Method
for Constrained Continuous Global Optimization

ABDEL-RAHMAN HEDAR and MASAO FUKUSHIMA
Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto
University, Kyoto 606-8501, Japan (e-mail: faku@i.kyoto-u.ac.jp)

(Received 20 September 2005; accepted in revised form 2 October 2005)

Abstract. In this paper, a simulated-annealing-based method called Filter Simulated
Annealing (FSA) method is proposed to deal with the constrained global optimization
problem. The considered problem is reformulated so as to take the form of optimizing
two functions, the objective function and the constraint violation function. Then, the FSA
method is applied to solve the reformulated problem. The FSA method invokes a multi-start
diversification scheme in order to achieve an efficient exploration process. To deal with the
considered problem, a filter-set-based procedure is built in the FSA structure. Finally, an
intensification scheme is applied as a final stage of the proposed method in order to over-
come the slow convergence of SA-based methods. The computational results obtained by
the FSA method are promising and show a superior performance of the proposed method,
which is a point-to-point method, against population-based methods.

Key words: Approximate descent direction, constrained global optimization, filter set, meta-
heuristics, simulated annealing

1. Introduction

Simulated Annealing (SA) is one of the most applicable metaheuristics in
the optimization community. One of the most powerful features of SA is
its ability of escaping from being trapped in local minima by accepting up-
hill moves through a probabilistic procedure especially in the earlier stages
of the search. For the continuous unconstrained optimization problem, SA
has intensively been studied in the forms of pure methods [1] and hybrid
methods [10,12]. However, implementing SA on the continuous constrained
optimization problem is still very limited in comparison with some other
metaheuristics like the Evolutionary Algorithms (EAs). The SA approaches
for constrained global optimization problems have been proposed by Wah,
Wang and Chen, see [3,31–33]. Another SA approach has been proposed
by Romeijn and Smith [28]. These approaches are regarded as a pure SA.
In this paper, we propose a hybrid SA approach which invokes some intelli-
gent concepts from other metaheuristics and local search methods. Specifi-
cally, we propose an SA-based approach called Filter Simulated Annealing
(FSA) method for the following general nonlinear programming problem in
the continuous space:

522 A. -R. HEDAR AND M. FUKUSHIMA

min
x

f (x)

s.t. gi (x)�0, i=1, . . . , l,
hj (x)=0, j =1, . . . ,m,
x ∈S,

(P)

where f , gi and hj are real-valued functions defined on the search space S ⊆
Rn. Usually, the search space S is defined as {x∈Rn :xi ∈ [li , ui] , i=1, . . . , n}.
The feasible region defined by the constraints is denoted by F ⊆S.

Most of the metaheuristics which have been proposed to solve prob-
lem (P) are Evolutionary Algorithms (EAs). The optimization methods
can be classified in two categories, namely, the point-to-point methods
which SA belongs to, and the population-based methods which EAs belong
to. Metaheuristics from both categories have successfully been applied to
the continuous unconstrained optimization problem. For example, some
population-based methods such as genetic algorithms and scatter search
methods have been proposed, see [11,21] and references therein. As to
point-to-point methods, tabu search, as well as SA, has also been invoked
to deal with the continuous unconstrained optimization problem, see [13]
and references therein. However, invoking point-to-point methods to deal
with continuous constrained optimization problems is still very limited in
comparison with the population-based methods. The main reason for the
unpopularity of SA for constrained global optimization problems, as well
as most of the point-to-point methods, is its difficulty in keeping diversity.
Especially, when the feasible region consists of several separate sub-regions,
it is not so easy for a point-to-point method without a guidance of a diver-
sification scheme to explore such regions effectively. Moreover, the point-
to-point methods can be divided in two classes, single-start methods and
multi-start methods. The latter methods have shown efficient performance
when applied to difficult optimization problems [23,24,30]. The standard
SA belongs to the class of single-start methods. Therefore, there is a need
to modify the standard SA in order to obtain an efficient method that can
deal with the general case of problem (P).

In order to compose a powerful point-to-point-based method for solving
problem (P), it is necessary to consider the following things:

• In order to achieve efficient exploration of the space of interest, the
designed method should consist of multi-start stages with a guidance
of an effective diversification scheme. Otherwise, in the case of having
separate feasible sub-regions, the method may be trapped in the first
hit feasible sub-region.

• An efficient exploration process should also invoke a search procedure
which has the ability to explore both feasible and infeasible regions,

DERIVATIVE-FREE FILTER SIMULATED ANNEALING METHOD 523

rather than exploring the feasible region only. This is needed to reach
a global solution especially in the following cases:
– the global solution lies on the boundary of the feasible region,
– the global solution lies in a feasible sub-region which differs from the

one currently searched.
• In constrained optimization problems like problem (P), optimal solu-

tions usually lie on the boundary of the feasible region. In order to
explore the region near the boundary of the feasible region effectively,
the designed method should invoke a solution generation procedure
which is able to intensify the solution generation process.

• An elite-based intensification scheme should be used in the final stage
in order to refine the best solution found so far. Especially, if the
method is SA-based, a quicker intensification scheme is needed as a
remedy of the slow convergence of SA in its final stage.

We have considered all the above in designing the FSA method. So the
FSA method is a multi-start method with a diversification scheme. The
FSA method uses the filter set concept [7] in accepting new trial solutions,
which gives it the ability to explore both feasible and infeasible regions.
Moreover, the FSA method generates more trial solutions whenever the
region near the constraint boundary is reached. Finally, two types of inten-
sification schemes are applied in order to refine the best solution visited
so far. Thus, the FSA method is a hybrid method which takes advantage
of low computational cost of point-to-point methods and efficient explora-
tion of population-based methods. In other words, the FSA method is an
attempt to design a point-to-point method that behaves like a population-
based method without spending high computational cost.

The numerical results shown later indicate that the proposed FSA
method is very promising in terms of the quality of obtained solutions as
well as the computational costs especially for dealing with constraints. In
particular, the numerical results also show that the FSA method is com-
petitive with the population-based methods in the quality of solution and
it is much cheaper than them in the computational costs. In the next sec-
tion, we give some preliminaries needed throughout the paper. In Section
3, we highlight the main components of the proposed FSA method. The
study of the FSA parameters is given in Section 4. In Sections 5 and 6, we
report numerical results for the FSA method. Finally, the conclusion makes
up Section 7.

2. Preliminaries

This section highlights the idea of reformulating problem (P) as a multi-
objective optimization problem and the concepts of filter set and filtered

524 A. -R. HEDAR AND M. FUKUSHIMA

points. To achieve that, the concept of Pareto dominance in multiobjective
optimization should be defined first.

2.1. pareto dominance

Pareto Dominance is the most common concept of optimality in multiobjec-
tive optimization. Multiobjective optimization seeks to optimize a vector of
objective functions over a feasible region in the space of decision variables.
For the multiobjective minimization problem with the objective functions
ϕ1 (x) , . . . , ϕq (x), defined on the search space SM ⊆Rn, the Pareto Domi-
nance is defined as follows.

DEFINITION 1. An objective vector �(y)= (ϕ1 (y) , . . . , ϕq (y)) is said to
dominate another objective vector �(z)= (ϕ1 (z) , . . . , ϕq (z)) if and only if
ϕi (y)�ϕi (z) for all i=1, . . . , q and there exists at least one j ∈{1, . . . , q}
such that ϕj (y)<ϕj (z) .

We denote �(y) ≺ �(z) if �(y) dominates �(y). Moreover, we write
�(y)��(z) to indicate that either �(y)≺�(z) or �(y)=�(z) holds. In
the rest of the paper, we will simply write y≺z and y�z instead of �(y)≺
�(z) and �(y)��(z), respectively.

2.2. problem reformulation

An effective approach to handle constraints is to use multiobjective opti-
mization techniques, see for example [4,5]. Such approaches reformulate
the constrained problem as a multiobjective problem involving the original
objective function and constraint violation functions. More specifically, by
introducing the constraint violation functions

Gi (x)= (max [0, gi (x)])
α , i=1, . . . , l,

Gl+j (x)=
∣
∣hj (x)

∣
∣
α
, j =1, . . . ,m,

(1)

where α is usually chosen to be 1 or 2, problem (P) can be reformulated
as the following multiobjective optimization problem:

min
x∈S

[f (x) ,G1 (x) , . . . ,Gm+l (x)] . (PM)

Alternatively, we may consider the following bi-objective optimization
problem as another reformulation of problem (P):

min
x∈S

[f (x) ,G(x)] , (PB)

DERIVATIVE-FREE FILTER SIMULATED ANNEALING METHOD 525

where G(x)= ∑m+l
i=1 Gi (x). The method proposed in this paper will deal

with problem (P) through the reformulated problem (PB). In particular,
we will denote x≺ y if x dominates y with respect to the vector function
�(x)= (f (x),G(x)).

2.3. filter set and filtered points

The filter set F is defined as a finite set of infeasible1 points in S such that
x≺y does not hold for any x and y in F. The point xF with the minimum
function value f (x) found so far in the feasible region F ={x ∈S :G(x)=
0} is saved and treated separately as a single filter point. This definition is
taken from [2] which differs slightly from the original definition in [7]. A
point y is called a filtered point [2], if one of the following holds:

• y�x for some x ∈F.
• G(y)�Gmax, where Gmax>0 is the maximum tolerance allowed to the

constraint violation.
• G(y)= 0 and f (y)� f F , where f F = f (xF) is the minimum function

value found so far in the feasible region.
In other words, we have three kinds of filtered point sets:

F̄I ={y ∈S :y�x for some x ∈F} ,
F̄II ={y ∈S :G(y)�Gmax} ,
F̄III =

{

y ∈S :G(y)=0, f (y)�f F
}

.

Therefore, the set of all filtered points is defined as F̄= F̄I ∪ F̄II ∪ F̄III. Unfil-
tered points are used to update F by adding them and deleting the old ones
which are dominated by the new added points.

3. The FSA Method

The FSA method starts with a diversification generation procedure to gen-
erate a set of diverse solutions called DivSet. The initial solution is cho-
sen from the DivSet. Then, the DivSet stands by to provide the search
with a diverse solution whenever further diversification is needed. In the
FSA method, we introduce a ranking procedure for comparing and order-
ing solutions. This ranking procedure is based on the filter set as well as
objective function and constraint violation function values.

The scenario in the FSA method can be described as follows. Let the
current trial solution be Sol. Using the FSA ranking procedure, Sol is

1Throughout the paper, the feasibility is related only to problem (P) rather than PM or PB ,
that is, we call a point x ∈S feasible if G(x)=0, and infeasible if G(x)>0.

526 A. -R. HEDAR AND M. FUKUSHIMA

initialized to be the best ranked one in DivSet. Then, trial solutions are
generated in a neighborhood of Sol using a trial solution generation proce-
dure based on the approximate descent direction (ADD) method proposed
in [12]. The trial solution generation procedure generates trial solutions in
such a way that the objective function value is likely to decrease if Sol is
feasible, and the constraint violation function value is likely to decrease if
Sol is infeasible. Moreover, the trial solution generation procedure intensi-
fies the solution generation process if Sol is close to the boundary of the
feasible region. We try to update Sol with one of the generated trial solu-
tions using the simulated annealing acceptance concept. Specifically, if an
unfiltered trial solution is obtained, we accept it with probability 1. Other-
wise, a trial solution is accepted with a certain probability determined by
the temperature parameter. The temperature is controlled by some cooling
schedule, which consists of the initial temperature, the rule of lowering the
temperature, and the epoch length, i.e., the number of iterations at each
temperature level. Whenever the number of consecutive iterations without
accepting a new trial solution exceeds a predetermined maximum number,
a new diverse solution is chosen from DivSet and the re-annealing process
is applied, i.e., the temperature is re-initialized. While the search proceeds,
DivSet is updated by removing any of its elements if one of the gener-
ated trial solutions reaches a region close to this element. We terminate
this main stage of the FSA method when the cooling schedule is completed
with the empty DivSet. Finally, two intensification schemes are invoked to
refine the best solution found so far. The best solution is defined to be the
best feasible solution if the feasible region is reached. Otherwise, the best
solution is defined to be the infeasible solution with the least constraint
violation function value. The temperature parameter at the best solution
found so far in the previous search stage is used in the first intensification
scheme which applies an annealing process with slower cooling schedule
and smaller step sizes. The second intensification scheme applies a greedy
local search method on a penalty function of problem (P) starting from
the best solution found so far.

Figure 1 shows the outline of the FSA method. Below, we describe the
details of the FSA main steps sketched above and state the FSA algorithm
formally at the end of this section.

3.1. diversification generation procedure

In the FSA method, we use the scatter search diversification generation
method [21,22] to generate a diverse solution set DivSet. In that method,
the interval (ui − li) of each variable is divided into four sub-intervals of
equal size. For each sub-interval of each variable, a frequency count is

DERIVATIVE-FREE FILTER SIMULATED ANNEALING METHOD 527

Figure 1. Outline of the FSA method.

defined as the number of solutions previously chosen in this sub-interval.
To generate a new solution to be added to DivSet, one has to

• choose one sub-interval for each variable randomly with a probability
inversely proportional to its frequency count, and

• choose a random value for each variable that lies in the corresponding
selected sub-interval.

While the search proceeds, the DivSet is updated by eliminating any of
its elements lying close to a visited solution. Specifically, when the current
solution is x, the DivSet is updated through the rule

528 A. -R. HEDAR AND M. FUKUSHIMA

DivSet=DivSet\
{

y ∈DivSet :
n

∑

i=1

(xi −yi)2
H 2
i

�1
}

, (2)

where HDiv := (H1, . . . ,Hn) is a predetermined constant vector with positive
components.

When the diversification is needed, the solution with the largest distance
from the current solution is chosen from the DivSet to be a new diverse
solution.

3.2. ranking procedure

To order the solutions in a set S = {

x1, x2, . . . , xµ
}

, we introduce the fol-
lowing ranking procedure. The solutions are ordered based on three rank
functions as given below.

1. Dominance Rank (rd): The best feasible point xF is given the rank
value rd =1, and other feasible points are given the rank value rd =2.
The points in F are given the rank value rd =1, and any other infea-
sible point x is given the rank value rd =ν+1, where ν is the number
of points in F which dominate x.

2. f -value Rank (rf): According to their objective function values
f (xi) , xi ∈S, the best point is given the rank value rf =1, the second
best point is given the rank value rf =2, and so on.

3. G-value Rank (rG): According to their constraint violation function
values G(xi) , xi ∈S, the best point is given the rank value rG=1, the
second best point is given the rank value rG=2, and so on.

In each ranking described above, ties are broken arbitrarily. Then, the
total ranking function r is defined by

r(xi)= rd(xi)+ λ

µ
rf (xi)+ (1−λ)

µ
rG(xi), xi ∈S, (3)

where λ∈ [0,1] . The solutions in S are ordered and relabeled such that

r (x1)� r (x2)� · · ·� r (

xµ
)

. (4)

The main role of the parameter λ is to control the priority in the ranking
between the objective function value and the feasibility. Actually, the rank-
ing function r is basically based on the dominance rank rd and, within the
same dominance rank, the parameter λ gives a greater value to either of
the ranking values rf and rG. Specifically, setting λ∈ [0,0.5) gives some pri-
ority to feasible points and setting λ∈ (0.5,1] gives some priority to points
with lower objective function values. In the FSA method, the value of λ

DERIVATIVE-FREE FILTER SIMULATED ANNEALING METHOD 529

is chosen to be less than 1/µ in order to accept a better feasible solu-
tion when it is found. Moreover, in this ranking procedure, a new infeasible
solution which reduces the constraint violation function is more likely to be
accepted than a new feasible solution which is worse than the best feasible
solution found so far. This makes the search process effective in exploring
near the boundary of the feasible region.

3.3. trial solution generation procedure

We use Approximate Descent Direction (ADD) method [12] to generate
trial solutions in the FSA method. The ADD method has proved to have
high ability of producing a descent direction, see [12,13]. So we invoke the
ADD procedure in generating trial solutions instead of generating them
randomly as in the standard SA.

First, we summarize the ADD method before stating the trial solu-
tion generation procedure. The ADD method is a derivative-free proce-
dure which uses several points around a given point x ∈Rn to generate an
approximate descent direction of a function ψ at x. More specifically, the
ADD method chooses p points close to x, called exploring points, in order
to generate an approximate descent direction v∈Rn of ψ at x, where p is
some positive integer. The exploring points, say {yi}pi=1 , are used to com-
pute the direction v as follows:

v=
p

∑

i=1

wiei, (5)

where

wi = �ψi
∑p

j=1

∣
∣�ψj

∣
∣
, i=1,2, . . . , p,

ei =− yi −x
‖yi −x‖ , i=1,2, . . . , p,

�ψi =ψ(yi)−ψ(x), i=1,2, . . . , p.

By means of (5), the direction v is composed toward the vectors −sign (�ψi)
(yi −x) with weights proportional to |�ψi | , i=1,2, . . . , p. Figure 2 shows
an example of composing an ADD in two dimensions. Given a point x ∈
R2, the ADD v is composed in Figure 2 toward

• the vector − (y1 −x) , since the inequality ψ (y1)�ψ (x) suggests that
the function value is not likely to decrease along the direction y1 −x,
and

• the vector y2 − x, since the inequality ψ (y2)<ψ (x) suggests that the
function value is likely to decrease along the direction y2 −x.

530 A. -R. HEDAR AND M. FUKUSHIMA

Figure 2. An ADD example in R2.

In the FSA method, we use the ADD method to generate a search direc-
tion d at a given solution x, and then use it to generate new trial solutions
in a neighborhood of x. Specifically, we first generate p exploring points
close to x and generate a search direction as follows:

1. If x is feasible, we apply the ADD method using the generated explor-
ing points to compute an approximate descent direction vf of f at x.
Then, we set the search direction d :=vf /

∥
∥vf

∥
∥ .

2. If x is infeasible, we apply the ADD method using the generated
exploring points to compute an approximate descent direction vG of
G at x. Then, we set the search direction d :=vG/‖vG‖ .

Trial solutions can be generated along the search direction d with suit-
able step sizes. Moreover, it is known that, in most cases, optimal solu-
tions can be found on the boundary of the feasible region. So, in order to
encourage the search to explore the region near the boundary effectively,
more trial solutions should be generated whenever the current solution is
close to the boundary. To implement this idea in the FSA method, another
trial solution will be generated between the current solution and the trial
solution if the feasibility status changes between them. Figure 3 shows an
example of the two types of generating trial solutions in the neighborhood
of a current solution x. In Figure 3(a), a trial solution y is generated along
the search direction d and since x and y are both feasible, no more trial
solution will be generated. However, in Figure 3(b), x is feasible but y is
infeasible, and so another trial solution y ′ is generated between x and y.
Formally, we can define the trial solution set as

TS(x)={y :y=x+ δi�d, i ∈ I }, (6)

where � is a step size and δi are random numbers. The set I is given by
I = {1} if the feasibility status at x + δ1�d is the same as that at x, i.e.,
G(x+δ1�d)=G(x)=0, or G(x+�d)>0 and G(x)>0, and I ={1,2}, oth-
erwise. The random numbers δi give the search some stochastic behavior to
achieve more efficient exploration. For example, we may let δ1 be uniformly
distributed in the interval (0,1) and δ2 be normally distributed with mean
1/2 and a suitable variance σ 2.

DERIVATIVE-FREE FILTER SIMULATED ANNEALING METHOD 531

(b)(a)

Figure 3. An example of generating trial solutions.

3.4. intensification

In the FSA method, we compose two stages of intensification process. The
first one is an SA-based procedure, called SA Intensification, in which up-
hill movements may be accepted in order to avoid the case where the region
around the best solution visited so far is prematurely explored in the previ-
ous search stages. The other stage of intensification is a greedy process that
accepts only down-hill movements, which we call Local Search Intensifica-
tion. This greedy-type intensification is needed since it has been reported
that the SA can reach a region near global minima; however, it may wan-
der around the optimal solution if high accuracy is required [12,34]. The
outline of these intensification stages is given below.

• SA Intensification. In the previous stage of the search, we save the
temperature parameter value recorded at the best solution found so
far. Then, in order to refine that solution, a slower cooling schedule,
i.e., a schedule with a higher cooling ratio, is started from the saved
value of the temperature parameter. Moreover, the step size used in
generating trial solutions is reduced to refine the search steps for more
accurate exploration.

• Local Search Intensification. A direct search method is applied, start-
ing from the best solution found so far, to minimize the penalty func-
tion

p(x)=f (x)+ρG(x), (7)

where ρ>0 is a penalty parameter. Kelley’s modification [15,16] of the
Nelder-Mead method [27] is used to minimize the function p(x) in N
consecutive times using gradually increasing penalty parameters ρ1 <

ρ2< · · ·<ρN.

532 A. -R. HEDAR AND M. FUKUSHIMA

3.5. fsa algorithm

The formal description of the FSA method is given below.

3.5.1. Algorithm FSA

1. Initialization. Construct DivSet using the diversification generation
procedure. Set the best ranked point in DivSet to be the initial point
x0. Choose the cooling schedule parameters: initial temperature Tmax,
final temperature Tmin and cooling ratio γ ∈ (0,1), and the epoch
length M and set T :=Tmax. Set F0 to be empty, set xbest :=x0, choose
a step size �>0, choose a positive integer Kmax, and set k :=0.

2. Main Loop

2.1. Compute a trial solution set T S(xk) as in (6) with the step size
�. Set yk equal to the best ranked point in T S(xk).

2.2. The trial point yk is accepted with the probability

p=
{

1, if yk /∈ F̄k,
min{1, exp

(−�fG/T
)}, otherwise,

(8)

where �fG :=max {f (yk)−f (xk) ,G (yk)−G(xk)}.
2.3. If yk is accepted, then set xk+1 := yk; otherwise, set xk+1 := xk.

Update Fk, x
best and DivSet, and set k :=k+1.

2.4. Diversification. If the number of consecutive iterations without
accepting a new solution exceeds Kmax, and DivSet	= φ, then
choose xk ∈ DivSet, set T :=Tmax, set Fk to be empty, and go to
Step 2.1. Otherwise, go to Step 2.5.

2.5. If the epoch length M is attained, then go to Step 2.6. Otherwise,
go to Step 2.1.

2.6. If T >Tmin, then set T := γ T and go to Step 2.1. Otherwise, go
to Step 3.

3. Intensification

3.1. SA Intensification. Set xk equal to xbest, set T equal to the saved
temperature at that point, and set a final temperature T ′

min, an
epoch length M ′ and a cooling ratio γ ′>γ .

3.1.1 Compute a trial solution set T S(xk) as in (6) with the step size
�. Set yk equal to the best ranked point in T S(xk).

3.1.2 Accept yk with the probability p given by (8). Set xk+1 :=yk if yk
is accepted; otherwise, set xk+1 := xk. Update Fk and xbest, and
set k :=k+1.

DERIVATIVE-FREE FILTER SIMULATED ANNEALING METHOD 533

3.1.3 If the epoch length M ′ is attained, then go to Step 3.1.4. Oth-
erwise, go to Step 3.1.1.

3.1.4 If T >T ′
min, then set T := γ ′T and go to Step 3.1.1. Otherwise,

go to Step 3.2.

3.2. Local Search Intensification. For ρ=ρ1, ρ2, . . . , ρN , do the following:

3.2.1 Apply a local search method to the function f (x) + ρG(x)

starting from xbest.
3.2.2 Update xbest and go to Step 3.2.1.

4. Setting FSA Parameters

In this section, setting the FSA parameters is discussed to complete the
description of the FSA algorithm stated in the previous section. These
parameters can be classified as shown in Table I, which contains all FSA
parameters and their definitions. Some preliminary numerical experiments
have been done in order to find proper values of these parameters. More-
over, these experiments of tuning parameters aim to obtain a standard
setting of parameters which is problem-independent as much as possible.
Some parameters are set to their standard values reported in the literature.
Below, we state the suggested values of the FSA parameters as well as the
conclusion of what we got from the experiments of tuning parameters.

Table I. The FSA parameters

Parameter Group Parameter Definition

Constraint violation α Power factor used in (1)
Function ε Small positive number used for reformulating

equality constraints
Diversification |DivSet | Size of DivSet

HDiv Distance vector used to update DivSet
Kmax Maximum number of iterations allowed without

acceptance
Cooling schedule Tmax, Tmin Initial and final temperatures

M Epoch length
γ Cooling ratio

Trial solutions p Number of exploring points used in ADD
r Neighborhood radius used in ADD
� Step size used in (6)
σ 2 Variance of the normal distribution of δ2

λ Rank ordering parameter
Gmax Maximum value allowed on G(x)

Intensification T ′
min Final temperature in SA Intensification
M ′ Epoch length
γ ′ Cooling ratio in SA Intensification
ρ1, ρ2, . . . , ρN Penalty parameters

534 A. -R. HEDAR AND M. FUKUSHIMA

4.1. constraint violation function parameters

The power factor α used in (1) is set equal to 2, since using this value
showed notably better performance of the FSA method than that of using
the value 1. Treating the equality constraints as in (1) does not seem effi-
cient in the practical implementation. It was observed that reformulating
the equality constraint h(x)= 0 as the inequality constraint |h(x)| − ε� 0,
where ε is a small positive number, yielded a better performance of the
FSA method. Moreover, using a large value of ε in the early stage of the
search and reducing its value in the intensification stage gave better results.
Therefore, we set ε equal to 10−3 in reformulating all equality constraints
in all FSA search stages except in the local search intensification stage in
which ε is set equal to 10−6.

4.2. diversification parameters

The size of DivSet depends on many factors such as the width of the
search space, the number of separate feasible sub-regions, and the multimo-
dality of the objective function. We observed that setting the size of DivSet
equal to 50 fits almost all of the considered problems. The distance vector
HDiv = (H1, . . . ,Hn) used to update the DivSet is set so as to fit the size
of the search space. Specifically, we set Hi = ui−li

|DivSet |/n , i = 1, . . . , n, where
the denominator represents the average line density of the solutions of Div-
Set along each coordinate direction, so that the value of Hi represents the
average distance along the coordinate direction i between two neighboring
diverse solutions. The maximum number Kmax of iterations allowed with-
out accepting new trial solutions is set equal to 10.

4.3. cooling schedule parameters

The initial temperature Tmax is set large enough to make the initial proba-
bility of accepting transition close to 1. Besides the initial point x0, another
point x̃0 is generated in a neighborhood of x0 to calculate Tmax as

Tmax :=− 1
ln(0.9)

|f (̃x0)−f (x0)| .

At the beginning of each re-annealing process, a new Tmax is computed in
a similar manner. The cooling ratio γ is normally chosen from the inter-
val (0.9,0.99) [19]. In our experiments, we set γ equal to 0.9 and a higher
value is used in the intensification stage as we will state later. A common
choice of the epoch length M is to let it depend on the size of the problem
[17, 20]. In our experiments, we set M equal to 2n. The cooling schedule
is terminated when the temperature reaches a fixed minimum temperature

DERIVATIVE-FREE FILTER SIMULATED ANNEALING METHOD 535

Tmin. We observed that setting Tmin equal to min
(

10−5,10−5Tmax
)

could give
a complete cooling schedule in the sense that the acceptance probability at
the end is almost zero.

4.4. trial solutions parameters

The parameters used in computing the search directions vf and vG are the
number p of exploring points, and the radius r of the neighborhood in
which the exploring points are generated. We set p=2 and r=10−3 as sug-
gested in [12]. The ranking parameter λ is set equal to 0.5/µ, where µ is
the number of solutions to be ranked or compared. This setting allows the
best feasible solution to have the highest rank, whenever it exists, among
the compared solutions. Setting a proper value of step size � is very effec-
tive in the performance of the FSA algorithm, because setting too big a
value for � may yield a premature termination of the algorithm and set-
ting too small a value for � will not yield an efficient exploration pro-
cess for the whole search space. We tested many values of � and found
that the value �=min

(

0.05
∑n

i=1(ui − li)/n,10
)

gave the best performance.
As to the variance σ 2 of the normal distribution of δ2 in (6), the values
σ = 1/2,1/3,1/4 have been tested. We observed that setting σ = 1/3 gave
a slightly better performance than setting the other values. The filter set
contains only one parameter, i.e., the maximum value Gmax allowed to the
constraint violation function G(x). In the original reference [7] of the filter
method, the value of Gmax is set equal to max(1.25G(x0),100), where x0 is
the initial solution. However, in the FSA algorithm, we use a higher value,
since our goal is to explore the whole search space effectively and reaching
a global minimum, which differs from the goal of [7], i.e., finding a local
minimum. So we set Gmax equal to 10 max(1.25GDiv

max,100), where GDiv
max is

the maximum value of the constraint violation function G(x) computed at
each point in the DivSet.

4.5. intensification parameters

As to the SA Intensification Parameters, the final temperature T ′
min, the

epoch length M ′ and the cooling ratio γ ′ are set equal to 10−5Tbest,2n and
0.99, respectively, where Tbest is the temperature saved at the best solution
found so far. The number N of times the local search method is applied in
the local search intensification stage is set equal to 4. The penalty param-
eters used in these local searches are ρ1 =10β+2, ρ1 =10β+4, ρ1 =10β+6 and
ρ1 =10β+10, where β is the number that appears in the floating point form
α1.α2α3 · · ·×10β of the best point found so far.

536 A. -R. HEDAR AND M. FUKUSHIMA

5. Numerical Results

In this section, we report the performance of the FSA algorithm on 13
well-known test problems G1–G13 [14, 18, 26], which are shown in Appen-
dix A. The characteristics of those test problems are diverse enough to
cover many kinds of difficulties that constrained global optimization prob-
lems face. More experimental results on three other application problems
will be shown in the next section.

The FSA code was applied to solve each problem 30 times with different
starting solutions. For all test problems, the values of the FSA parameters
remained constant at those values which have been presented in the pre-
vious section. Table II summarizes the FSA results obtained for each test
problem as well as the best known objective function value for each prob-
lem. Problems G2, G3 and G8 are maximization problems originally, so
they were solved by converting them to minimization problems. In Table II,
the best and the worst objective function values obtained from 30 runs are
reported for each test problem. In order to show more details concerning
the quality of the obtained solutions, the average and the standard devia-
tion of the obtained objective function values are also reported in Table II.
Moreover, the average numbers Av. f -evals. and Av. c-evals. of objective
and constraint functions evaluations, respectively, are shown in the last two
columns of Table II. It is noteworthy that the FSA method is very econom-
ical in computing the constraint function values as shown in Table II.

The results obtained by the FSA method are quite satisfactory, except
for problem G2 which has the highest dimension among all test problems
G1–G13. On the other hand, the results for problem G12 are very promis-
ing since the feasible region of this problem consists of 93 separate spheres
with radius 0.25. The FSA method could successfully find global minima
in all runs with low computational costs as shown in Table II. This indi-
cates the success of the multi-start diversification scheme invoked in the
FSA method. For problem G11, the FSA method reached a point with
objective function value 0.7499990 for all 30 runs. However, by decreasing
the parameter ε, which is used to convert the equality constraint to the
inequality one, from 10−6 to 10−10 in the local search intensification, the
FSA method easily reached the exact global minimum with objective func-
tion value 0.75 in all runs.

To complete examining the performance of the FSA method, its results are
compared with those of other EA-based methods proposed for dealing with
problem (P). The EA-based methods that we used in the comparison are

1. Homomorphous Mappings (HM) method [18],
2. Stochastic Ranking (SR) method [29],
3. Adaptive Segregational Constraint Handling EA (ASCHEA) method [9],
4. Simple Multimembered Evolution Strategy (SMES) method [25].

DERIVATIVE-FREE FILTER SIMULATED ANNEALING METHOD 537

T
ab

le
II

.
F

SA
re

su
lt

s
fo

r
pr

ob
le

m
s

G
1–

G
13

P
r.

T
yp

e
B

es
t

kn
ow

n
B

es
t

A
v.

W
or

st
S.

D
.

A
v.

f-
ev

al
s.

A
v.

c-
ev

al
s.

G
1

m
in

−1
5

−1
4.

99
91

05
−1

4.
99

33
16

−1
4.

97
99

77
0.

00
48

13
20

5,
74

8
87

,7
01

G
2

m
ax

0.
80

36
19

0.
75

49
12

5
0.

37
17

08
1

0.
27

13
11

0
0.

09
80

23
22

7,
83

2
10

1,
90

3
G

3a
m

ax
1

1.
00

00
01

5
0.

99
91

87
4

0.
99

15
18

6
0.

00
16

53
31

4,
93

8
11

8,
40

4
G

4
m

in
−3

06
65

.5
39

−3
06

65
.5

38
0

−3
06

65
.4

66
5

−3
06

64
.6

88
0

0.
17

32
18

86
,1

54
37

,0
00

G
5a

m
in

51
26

.4
98

1
51

26
.4

98
1

51
26

.4
98

1
51

26
.4

98
1

0.
00

00
00

47
,6

61
17

,7
57

G
6

m
in

−6
96

1.
81

38
8

−6
96

1.
81

38
8

−6
96

1.
81

38
8

−6
96

1.
81

38
8

0.
00

00
00

44
,5

38
15

,8
17

G
7

m
in

24
.3

06
20

91
24

.3
10

57
1

24
.3

79
52

71
24

.6
44

39
7

0.
07

16
35

40
4.

50
1

17
1,

29
9

G
8

m
ax

0.
09

58
25

0.
09

58
25

0.
09

58
25

0.
09

58
25

0.
00

00
00

56
,4

76
23

,2
19

G
9

m
in

68
0.

63
00

57
3

68
0.

63
00

8
68

0.
63

64
2

68
0.

69
83

2
0.

01
45

17
32

4,
56

9
14

7,
03

5
G

10
m

in
70

49
.3

30
7

70
59

.8
63

50
75

09
.3

21
04

93
98

.6
49

20
54

2.
34

21
24

3,
52

0
93

,6
67

G
11

a
m

in
0.

75
0.

74
99

99
0

0.
74

99
99

0
0.

74
99

99
0

0.
00

00
00

23
,7

22
8,

48
5

G
12

m
in

−1
−1

.0
00

00
00

−1
.0

00
00

00
−1

.0
00

00
00

0.
00

00
00

59
,3

55
25

,8
18

G
13

a
m

in
0.

05
39

49
8

0.
05

39
49

8
0.

29
77

20
4

0.
43

88
51

1
0.

18
86

52
12

0,
26

8
42

,2
68

a
P

ro
bl

em
s

co
nt

ai
n

eq
ua

lit
y

co
ns

tr
ai

nt
s.

538 A. -R. HEDAR AND M. FUKUSHIMA

The challenge that the FSA method faces is to what extent a point-
to-point method behaves like a population-based method or even better.
To examine this issue, two measurements, solution qualities and compu-
tational costs, are considered. First, we discuss the solution qualities and,
later at the end of this section, we will discuss computational costs. The
results of the compared methods, which are taken from their original ref-
erences [9,18, 25, 29], as well as those of the FSA method are reported in
Table II to show the solution qualities obtained by them. It is not easy to
draw a definite conclusion from the comparison due to different accuracies
used in the respective results. However, we state below some comments on
the results reported in Table III. All the results in Table III are obtained
from 30 runs of each method except those of the HM method, which are
obtained from 20 runs. The HM method could obtain the optimal solution
in all runs for problem G11 only. The other methods, i.e., SR, ASCHEA,
and SMES, could obtain the optimal solutions in all runs for problems
{G1,G3,G4,G8,G11,G12}, {G4,G6,G8,G11} and {G1,G4,G8,G12}, respec-
tively. The FSA method could obtain the optimal solutions in all runs for
problems {G5,G6,G8,G11,G12}. It is noteworthy that the FSA method
could obtain the optimal solution in all runs for problem G5, whereas the
other methods failed to obtain it even in a single run. Moreover, the FSA
method could obtain the optimal solution of problem G13 in 7 out of 30
runs, while the other methods failed to obtain it.

The computational costs of the above EA-based methods are extremely
high compared with those of the FSA method. Since there is no auto-
matic termination criteria for those EA-based methods, they were termi-
nated when the number of generations exceeds a predetermined maximum
number. Therefore, the computational costs of these methods are problem-
independent, i.e., the number of objective and constraint functions evalu-
ations remains constant for each test problem. Specifically, computational
costs of HM, SR, ASCHEA and SMES for each test problem, which are
taken from their original references [9, 18, 25, 29], are 1400000, 350000,
1500000 and 250000 fitness function evaluations, respectively, and each fit-
ness function evaluation requires one evaluation of the objective function
and one evaluation of each constraint function. The main reason for these
high computational costs is that EAs are not equipped with automatic ter-
mination criteria and this is a main drawback of EAs. For some of the
test problems, the considered EA-based methods could obtain an optimal
solution in an early stage of the search, but they were not learned enough
to judge whether they could terminate. On the other hand, the EA-based
methods have generally less parameters than SA-based methods. However,
in the FSA method as well as SA-based methods, some preliminary exper-
iments for tuning parameters will let them learn applicable termination
criteria.

DERIVATIVE-FREE FILTER SIMULATED ANNEALING METHOD 539

Table III. Results of FSA and other EA-based methods for problems G1–G13

Pr. Type Best known HM SR ASCHEA SMES FSA

Best −14.7864 −15 −15 −15 −14.999105
G1 min −15 Av. −14.7082 −15 −14.84 −15 −14.993316

Worst −14.6154 −15 N.A. −15 −14.979977

Best 0.79953 0.803515 0.785 0.803601 0.7549125
G2 max 0.803619 Av. 0.79671 0.781975 0.59 0.785238 0.3717081

Worst 0.79119 0.726288 N.A. 0.751322 0.2713110

Best 0.9997 1.000 1 1.001038 1.0000015
G3a max 1 Av. 0.9989 1.000 0.99989 1.000989 0.9991874

Worst 0.9978 1.000 N.A. 1.000579 0.9915186

Best −30664.5 −30665.539 −30665.5 −30665.539062 −30665.5380
G4 min −30665.539 Av. −30655.3 −30665.539 −30665.5 −30665.539062 −30665.4665

Worst −30645.9 −30665.539 N.A. −30665.539062 −30664.6880

Best − 5126.497 5126.5 5126.599609 5126.4981
G5a min 5126.4981 Av. – 5128.881 5141.65 5174.492301 5126.4981

Worst – 5142.472 N.A. 5304.166992 5126.4981

Best −6952.1 −6961.814 −6961.81 −6961.813965 −6961.81388
G6 min −6961.81388 Av. −6342.6 −6875.940 −6961.81 −6961.283984 −6961.81388

Worst −5473.9 −6350.262 N.A. −6961.481934 −6961.81388

Best 24.620 24.307 24.3323 24.326715 24.310571
G7 min 24.3062091 Av. 24.826 24.374 24.6636 24.474926 24.3795271

Worst 25.069 24.642 N.A. 24.842829 24.644397

Best 0.0958250 0.095825 0.09582 0.095826 0.095825
G8 max 0.095825 Av. 0.0891568 0.095825 0.09582 0.095826 0.095825

Worst 0.0291438 0.095825 N.A. 0.095826 0.095825

Best 680.91 680.630 680.630 680.631592 680.63008
G9 min 680.6300573 Av. 681.16 680.656 680.641 680.643410 680.63642

Worst 683.18 680.763 N.A. 680.719299 680.69832

Best 7147.9 7054.316 7061.13 7051.902832 7059.86350
G10 min 7049.3307 Av. 8163.6 7559.192 7497.434 7253.047005 7509.32104

Worst 9659.3 8835.655 N.A. 7638.366211 9398.64920

Best 0.75 0.750 0.75 0.749090 0.7499990
G11a min 0.75 Av. 0.75 0.750 0.75 0.749358 0.7499990

Worst 0.75 0.750 N.A. 0.749830 0.7499990

Best −0.999999857 −1.000000 N.A. −1.000000 −1.000000
G12 min −1 Av. −0.999134613 −1.000000 N.A. −1.000000 −1.000000

Worst −0.991950498 −1.000000 N.A. −1.000000 −1.000000

Best N.A. 0.053957 N.A. 0.053986 0.0539498
G13a min 0.0539498 Av. N.A. 0.057006 N.A. 0.166385 0.2977204

Worst N.A. 0.216915 N.A. 0.468294 0.4388511
aProblems contain equality constraints.

540 A. -R. HEDAR AND M. FUKUSHIMA

6. More Numerical Experiments

In this section, we discuss the results of the FSA method on some applica-
tion problems. Three problems from the engineering optimization area are
considered.

6.1. welded beam design problem

The welded beam design problem [6] yields an optimization problem which
has four design variables x= (x1, x2, x3, x4) and takes the following form:

min
x

f (x)=1.10471x2
1x2 +0.04811x3x4(14+x2)

s.t. g1(x)= τ(x)−13000�0,
g2(x)=σ(x)−30000�0,
g3(x)=x1 −x4 �0,
g4(x)=6000−Pc(x)�0,
g5(x)= δ(x)−0.25�0,
0.125�x1 �10, 0.1�x2, x3, x4 �10,

where

τ(x)=
√

(τ1(x))2 + (τ2(x))2 + x2τ1(x)τ2(x)√
0.25[x2

2+(x1+x3)2]
,

τ1(x)= 6000√
2x1x2

, τ2(x)= 6000(14+0.5x2)
√

0.25[x2
2+(x1+x3)2]

2[0.707x1x2(x
2
2/12+0.25(x1+x3)2)]

,

σ (x)= 504000
x2

3x4
, Pc(x)=64746.022(1−0.0282346x3)x3x

3
4 , δ(x)= 2.1952

x3
3x4
.

This problem has been well studied, see [6] and references therein. How-
ever, the FSA method was able to find a new solution which is better than
the one known in the literature. Specifically, the FSA method obtained the
solution

x∗ = (0.24435257,6.2157922,8.2939046,0.24435258)

with the objective function value 2.381065, while the known solution has
the objective function value 2.38119 as reported in [6]. Moreover, the per-
formance of the FSA method is compared with the GA-based method [6]
which found the previously known solution. The best, the average and the
worst of objective function values obtained by 50 runs of both methods
are reported in Table IV. Moreover, the average numbers of objective and
constraint functions evaluations, i.e., Av. f -evals. and Av. c-evals., are also

DERIVATIVE-FREE FILTER SIMULATED ANNEALING METHOD 541

shown in Table IV. The results related to the GA-based method are taken
from the original reference [6].

6.2. pressure vessel design problem

The optimization problem derived from the pressure vessel design problem
[5] has four design variables x= (x1, x2, x3, x4). This problem can be stated
as follows:

min
x

f (x)=0.6224x1x3x4 +1.7781x2x
2
3 +3.1661x2

1x4 +19.84x2
1x3

s.t. g1(x)=−x1 +0.0193x3 �0,
g2(x)=−x2 +0.00954x3 �0,
g3(x)=−πx2

3x4 − 4
3πx

3
3 +1296000�0,

g4(x)=x4 −240�0.

The FSA code was run 30 times to solve this problem and the obtained
results are summarized in Table V. The results contain the best, the aver-
age, the worst and the standard deviation of objective function values, and
the average numbers of objective and constraint functions evaluations. The
corresponding results of the GA-based method in Table V are taken from
the original reference [5]. The FSA method could obtain a better solution
for this problem at

x∗ = (0.768325709391,0.379783796302,39.809622248187,

207.225559518596)

with the objective function value 5868.764836.

Table IV. Results for the welded beam design problem

Method Best Av. Worst Av. f-evals. Av. c-evals.

GA [6] 2.38119 2.39203 2.64583 40,080 40,080
FSA 2.381065 2.404166 2.488967 56,243 23,989

Table V. Results for the pressure vessel design problem

Method Best Av. Worst S.D. Av. f -evals. Av. c -evals.

GA [5] 6059.946341 6177.253268 6469.322010 130.929702 80,000 80,000
FSA 5868.764836 6164.585867 6804.328100 257.473670 108,883 49,253

542 A. -R. HEDAR AND M. FUKUSHIMA

Table VI. Results for the tension-compression string problem

Method Best Av. Worst S.D. Av.f -evals. Av. c -evals.

GA [5] 0.012681 0.012742 0.012973 0.000059 80,000 80,000
FSA 0.012665285 0.012665299 0.012665338 0.000000022 49,531 18,802

6.3. tension-compression string problem

The problem of minimizing the weight of a tension-compression string [5]
can be expressed as the following optimization problem with three design
variables x= (x1, x2, x3):

min
x

f (x)=x2
1x2(x3 +2)

s.t. g1(x)=1− x3
2x3

71,785x4
1
�0,

g2(x)= 4x2
2−x1x2

12,566x3
1 (x2−x1)

+ 1
5,108x2

1
−1�0,

g3(x)=1− 140.45x1

x3x
2
2

�0,

g4(x)= x1+x2
1.5 −1�0.

The FSA code was called 30 times with different starting solutions in order
to examine the performance of the FSA method. The results obtained in all
runs, as well as those of the GA-based method [5], are reported in Table
VI. The results of the GA-based method are borrowed from the original
reference [5]. The FSA method could obtain the better solution

x∗ = (0.05174250340926,0.35800478345599,11.21390736278739)

with the objective function value 0.012665285. The figures in Table VI
show that the results obtained by the FSA method are stable for this prob-
lem. Moreover, the worst solution obtained by the FSA method is still bet-
ter than the best one obtained by the GA-based method [5]. Finally, the
computational costs of the FSA method are much lower than those of the
GA-based method [5].

7. Conclusion

The hybrid multi-start point-to-point FSA method has been proposed in
this paper. The structure of the FSA method stands on simulated anneal-
ing, the filter set concept, a new solution generation procedure, and diver-
sification and intensification schemes. These strategies are hybridized in
the FSA method in such a way that a point-to-point method behaves
like a population-based method without spending high computational cost.

DERIVATIVE-FREE FILTER SIMULATED ANNEALING METHOD 543

The computational results for 13 well-known test problems as well as
three application problems are shown to demonstrate the efficiency of the
FSA method. A superior behavior of the proposed method over popula-
tion-based methods in saving the computational costs especially for the
constraint function evaluations has been observed.

Appendix A

List of test problems

A.1. problem g12

min
x

f (x)=5
∑4

i=1 xi −5
∑4

i=1 x
2
i −∑13

i=5 xi

s.t. g1 (x)=2x1 +2x2 +x10 +x11 −10�0,
g2 (x)=2x1 +2x3 +x10 +x12 −10�0,
g3 (x)=2x2 +2x3 +x11 +x12 −10�0,
g4 (x)=−8x1 +x10 �0,
g5 (x)=−8x2 +x11 �0,
g6 (x)=−8x3 +x12 �0,
g7 (x)=−2x4 −x5 +x10 �0,
g8 (x)=−2x6 −x7 +x11 �0,
g9 (x)=−2x8 −x9 +x12 �0,
xi �0, i=1, . . . ,13,
xi �1, i=1, . . . ,9,13.

The bounds: U = (1,1,1,1,1,1,1,1,1,100,100,100,1) and L= (0, . . . ,0).
Global minimum: x∗ = (1,1,1,1,1,1,1,1,1,3,3,3,1) , f (x∗)=−15.

A.2. problem g2

max
x

f (x)=|
∑n

i=1 cos4(xi)−2
∏n
i=1 cos2(xi)√∑n

i=1 ix
2
i

|
s.t. g1 (x)=−∏n

i=1 xi +0.75�0,

g2 (x)=
∑n

i=1 xi −7.5n�0.

The bounds: U = (10, . . . ,10) and L= (0, . . . ,0).
Best known value: f (x∗)=0.803619, for n=20.

2The formula of G1 is presented as its common form in the literature [8]. However, variable
x13 can be eliminated since its value at the global solution, which is x13 =1, can be easily derived.

544 A. -R. HEDAR AND M. FUKUSHIMA

A.3. problem g3

max
x

f (x)= (√
n
)n∏n

i=1 xi

s.t. h1 (x)=
∑n

i=1 x
2
i −1=0.

The bounds: U = (1, . . . ,1) and L= (0, . . . ,0).
Global maximum: x∗ =

(
1√
n
, . . . , 1√

n

)

, f (x∗)=1.

A.4. problem g4

min
x

f (x)=5.3578547x2
3 +0.8356891x1x5 +37.293239x1 −40792.141

s.t. g1 (x)=u (x)−92�0,
g2 (x)=−u (x)�0,
g3 (x)=v (x)−110�0,
g4 (x)=−v (x)+90�0,
g5 (x)=w (x)−25�0,
g6 (x)=−w (x)+20�0,

where

u (x)=85.334407+0.0056858x2x5 +0.0006262x1x4 −0.0022053x3x5,

v (x)=80.51249+0.0071317x2x5 +0.0029955x1x2 +0.0021813x2
3 ,

w (x)=9.300961+0.0047026x3x5 +0.0012547x1x3 +0.0019085x3x4.

The bounds: U = (102,45,45,45,45) and L= (78,33,27,27,27).
Global minimum: x∗ = (78,33,29.995256025682,45,36.775812905788) ,
f (x∗)=−30665.539.

A.5. problem g5

min
x

f (x)=3x1 +10−6x3
1 +2x2 + 2

3 ×10−6x3
2

s.t. g1 (x)=x3 −x4 −0.55�0,
g2 (x)=x4 −x3 −0.55�0,
h1 (x)=1000 [sin (−x3 −0.25)+ sin (−x4 −0.25)]+894.8−x1 =0,
h2 (x)=1000 [sin (x3 −0.25)+ sin (x3 −x4 −0.25)]+894.8−x2=0,
h3 (x)=1000 [sin (x4 −0.25)+ sin (x4 −x3 −0.25)]+1294.8=0.

The bounds: U = (1200,1200,0.55,0.55) and L= (0,0,−0.55,−0.55).
Best known solution: x∗ = (679.9453,1026,0.118876,−0.3962336) , f (x∗)=
5126.4981.

DERIVATIVE-FREE FILTER SIMULATED ANNEALING METHOD 545

A.6. problem g6

min
x

f (x)= (x1 −10)3 + (x2 −20)3

s.t. g1 (x)= (x1 −5)2 + (x2 −5)2 +100�0,
g2 (x)= (x1 −5)2 + (x2 −5)2 −82.81�0.

The bounds: U = (100,100) and L= (13,0).
Global minimum: x∗ = (14.095,0.84296) , f (x∗)=−6961.81388.

A.7. problem g7

min
x

f (x)=x2
1 +x2

2 +x1x2 −14x1 −16x2 + (x3 −10)2 +4(x4 −5)2 + (x5 −3)2

+2(x6 −1)2 +5x2
7 +7(x8 −11)2 +2(x9 −10)2 + (x10 −7)2 +45

s.t. g1 (x)=4x1 +5x2 −3x7 +9x8 −105�0,
g2 (x)=10x1 −8x2 −17x7 +2x8 �0,
g3 (x)=−8x1 +2x2 +5x9 −2x10 −12�0,
g4 (x)=3(x1 −2)2 +4(x2 −3)2 +2x2

3 −7x4 −120�0,
g5 (x)=5x2

1 +8x2 + (x3 −6)2 −2x4 −40�0,
g6 (x)=0.5(x1 −8)2 +2(x2 −4)2 +3x2

5 −x6 −30�0,
g7 (x)=x2

1 +2(x2 −2)2 −2x1x2 +14x5 −6x6 �0,
g8 (x)=−3x1 +6x2 +12(x9 −8)2 −7x10 �0.

The bounds: U = (10, . . . ,10) and L= (−10, . . . ,−10).
Global minimum: x∗ = (2.171996,2.363683,8.773926,5.095984,0.9906548,
1.430574,1.321644,9.828726,8.280092,8.375927), f (x∗)=24.3062091.

A.8. problem g8

max
x

f (x)= sin3
(2πx1) sin(2πx2)

x3
1 (x1+x2)

s.t. g1 (x)=x2
1 −x2 +1�0,

g2 (x)=1−x1 + (x2 −4)2 �0.

The bounds: U = (10,10) and L= (0,0).
Global maximum: x∗ = (1.2279713,4.2453733) , f (x∗)=0.095825.

546 A. -R. HEDAR AND M. FUKUSHIMA

A.9. problem g9

min
x

f (x)= (x1 −10)2 +5(x2 −12)2 +x4
3 +3(x4 −11)2 +10x6

5 +7x2
6 +x4

7

−4x6x7 −10x6 −8x7

s.t. g1 (x)=2x2
1 +3x4

2 +x3 +4x2
4 +5x5 −127�0,

g2 (x)=7x1 +3x2 +10x2
3 +x4 −x5 −282�0,

g3 (x)=23x1 +x2
2 +6x2

6 −8x7 −196�0,
g4 (x)=4x2

1 +x2
2 −3x1x2 +2x2

3 +5x6 −11x7 �0.

The bounds: U = (10, . . . ,10) and L= (−10, . . . ,−10).
Global minimum: x∗ = (2.330499,1.951372,−0.4775414,4.365726,
−0.6244870,1.038131,1.594227), f (x∗)=680.6300573.

A.10. problem g10

min
x

f (x)=x1 +x2 +x3

s.t. g1 (x)=−1+0.0025(x4 +x6)�0,
g2 (x)=−1+0.0025(−x4 +x5 +x7)�0,
g3 (x)=−1+0.01(−x5 +x8)�0,
g4 (x)=100x1 −x1x6 +833.33252x4 −83333.333�0,
g5 (x)=x2x4 −x2x7 −1250x4 +1250x5 �0,
g6 (x)=x3x5 −x3x8 −2500x5 +1250000�0.

The bounds: U = (10000,10000,10000,1000,1000,1000,1000,1000) and
L= (100,1000,1000,10,10,10,10,10).
Global minimum: x∗ = (579.3167,1359.943,5110.071,182.0174,295.5985,
217.9799,286.4162,395.5979), f (x∗)=7049.3307.

A.11. problem g11

min
x

f (x)=x2
1 + (x2 −1)2

s.t. h1 (x)=x2 −x2
1 =0.

The bounds: U = (1,1) and L= (−1,−1).
Global minima: x∗ =

(

± 1√
2
, 1

2

)

, f (x∗)=0.75.

A.12. problem g12

min
x

f (x)=1−0.01[(x1 −5)2 + (x2 −5)2 + (x3 −5)2]

s.t. gi,j,k (x)= (x1 − i)2 + (x2 − j)2 + (x3 −k)2 −0.0625�0,
i, j, k=1,2, . . . ,9.

DERIVATIVE-FREE FILTER SIMULATED ANNEALING METHOD 547

The bounds: U = (10,10,10) and L= (0,0,0).
Global minimum: x∗ = (5,5,5) , f (x∗)=1.

A.13. problem g13

min
x

f (x)= ex1x2x3x4x5

s.t. h1 (x)=x2
1 +x2

2 +x2
3 +x2

4 +x2
5 −10=0,

h2 (x)=x2x3 −5x4x5 =0,
h3 (x)=x3

1 +x3
2 +1=0.

The bounds: U = (2.3,2.3,3.2,3.2,3.2) and L = (−2.3,−2.3,−3.2,−3.2,
−3.2). Global minimum: x∗ = (−1.717143,1.595709,1.827247,−0.7636413,
−0.763645), f (x∗)=0.0539498.

Acknowledgement

This research was supported in part by a Grant-in-Aid for Scientific
Research from Japan Society for the Promotion of Science.

References

1. Aarts, E. and Korst, J. (2000), Selected topics in simulated annealing. In: Ribeiro, C.C.
and Hansen, P. (eds.), Essays and Surveys in Metaheuristics, Kluwer Academic Publish-
ers, Boston, MA.

2. Audet, C. and Dennis Jr., J.E. (2004), A pattern search filter method for nonlinear pro-
gramming without derivatives, SIAM Journal on Optimization (to appear).

3. Chen, Y.X. (2001), Optimal anytime search for constrained nonlinear programming,
M.Sc. Thesis, Department of Computer Science, University of Illinois.

4. Coello Coello, C.A. (2002), Theoretical and numerical constraint-handling techniques
used with evolutionary algorithms: a survey of the state of the art, Computer Methods
in Applied Mechanics and Engineering 191, 1245–1287.

5. Coello Coello, C.A. and Montes, E.M. (2002), Constraint-handling in genetic algorithms
through the use of dominance-based tournament selection, Advanced Engineering Infor-
matics 16, 193–203.

6. Deb, K. (2000), An efficient constraint handling method for genetic algorithms, Com-
puter Methods in Applied Mechanics and Engineering 186, 311–338.

7. Fletcher, R. and Leyffer, S. (2002), Nonlinear programming without a penalty function,
Mathematical Programming 91, 239–269.

8. Floudas, C.A., Pardalos, P.M., Adjiman, C.S., Esposito, W.R., Gumus, Z., Harding,
S.T., Klepeis, J.L., Meyer, C.A. and Schweiger, C.A. (eds.) (1999), Handbook of Test
Problems for Local and Global Optimization, Kluwer Academic Publishers, Boston, MA.

9. Hamida, S.B. and Schoenauer, M. (2002), ASCHEA: new rsults using adaptive segrega-
tional constraint handling, In: Proceedings of the Congress on Evolutionary Computation
(CEC2002), Piscataway, New Jersey, IEEE Service Center, pp. 884–889.

10. Hedar, A. and Fukushima, M. (2002), Hybrid simulated annealing and direct search
method for nonlinear unconstrained global optimization, Optimization Methods and
Software 17, 891–912.

548 A. -R. HEDAR AND M. FUKUSHIMA

11. Hedar, A. and Fukushima, M. (2003), Minimizing multimodal functions by simplex cod-
ing genetic algorithm, Optimization Methods and Software 18, 265–282.

12. Hedar, A. and Fukushima, M. (2004), Heuristic pattern search and its hybridization
with simulated annealing for nonlinear global optimization, Optimization Methods and
Software 19, 291–308.

13. Hedar, A. and Fukushima, M. (2005), Tabu search directed by direct search methods for
nonlinear global optimization, European Journal of Operational Research (to appear).

14. Hock, W. and Schittkowski, K. (1981), Test Examples for Nonlinear Programming Codes,
Springer-Verlag, Berlin, Heidelberg.

15. Kelley, C.T. (1999), Detection and remediation of stagnation in the Nelder–Mead algo-
rithm using a sufficient decrease condition, SIAM Journal on Optimization 10, 43–55.

16. Kelley, C.T. (1999), Iterative Methods for Optimization, SIAM, Philadelphia, PA.
17. Kirkpatrick, S., Gelatt Jr., C.D. and Vecchi, M.P. (1983), Optimisation by simulated

annealing, Science 220, 671–680.
18. Koziel, S. and Michalewicz, Z. (1999), Evolutionary algorithms, homomorphous map-

pings, and constrained parameter optimization, Evolutionary Computation 7(1), 19–44.
19. Laarhoven, P.J. (1988), Theoretical and Computational Aspects of Simulated Annealing,

Stichting Mathematisch Centrum, Amsterdam.
20. Laarhoven, P.J. and Aarts, E.H. (1987), Simulated Annealing: Theory and Applications,

D. Reidel Publishing Company, Dordrecht, Holland.
21. Laguna, M. and Martı́, R. (2002), Experimental testing of advanced scatter search

designs for global optimization of multimodal functions, Journal of Global Optimization
(to appear).

22. Laguna, M. and Martı́, R. (2003), Scatter Search: Methodology and Implementations in
C, Kluwer Academic Publishers, Boston.

23. Martı́, R. (2002), Multi-start methods, In: Glover, F. and Kochenberger, G. (eds.), Hand-
book of MetaHeuristics, Kluwer Academic Publishers , Boston, MA, pp. 355–368.

24. Martı́, R. and Moreno, J.M. (2003), Métodos multi-arranque, Inteligencia Artificial 19,
49–60.

25. Montes, E.M. and Coello Coello, C.A. (2003), A simple multimembered evolution strat-
egy to solve constrained optimization problems, Technical Report EVOCINV-04-2003,
Evolutionary Computation Group at CINVESTAV, Sección de Computación, Departa-
mento de Ingeniería Eléctrica, CINVESTAV-IPN, México D.F., México.

26. Michalewicz, Z. and Schoenauer, M. (1996), Evolutionary algorithms for constrained
parameter optimization problems, Evolutionary Computation 4(1), 1–32.

27. Nelder, J.A. and Mead, R. (1965), A simplex method for function minimization,
The Computer Journal 7, 308–313.

28. Romeijn, H.E. and Smith, R.L. (1994), Simulated annealing for global constrained opti-
mization, Journal of Global Optimization 5, 101–126.

29. Runarsson, T.P. and Yao, X. (2000), Stochastic ranking for constrained evolutionary
optimization, IEEE Transactions on Evolutionary Computation 4(3), 284–294.

30. Schoen, F. (2002), Two phase methods for global optimization, In: Pardalos, P.M. and
Romeijn, H.E. (eds.), Handbook of Global Optimization, Kluwer Academic Publishers,
Boston, MA, pp. 151–178.

31. Wah, B.W. and Chen, Y.X. (2000), Optimal anytime constrained simulated annealing for
constrained global optimization, In: Dechter, R. (ed.), LNCS 1894, Springer-Verlag, pp.
425–440.

32. Wah, B.W. and Wang, T. (2000), Tuning strategies of constrained simulated annealing
for nonlinear global optimization, International Journal on Artificial Intelligence Tools
9(1), 3–25.

DERIVATIVE-FREE FILTER SIMULATED ANNEALING METHOD 549

33. Wang, T. (2000), Global optimization of constrained nonlinear programming, Ph.D.
Thesis, Department of Computer Science, University of Illinois.

34. Wang, P.P. and Chen, D.S. (1996), Continuous optimization by a variant of simulated
annealing, Computational Optimization and Applications 6, 59–71.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

